Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenase.

Identifieur interne : 000590 ( Main/Exploration ); précédent : 000589; suivant : 000591

Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenase.

Auteurs : Desriani [Japon] ; Stefano Ferri ; Koji Sode

Source :

RBID : pubmed:20120044

Descripteurs français

English descriptors

Abstract

The active site of cellobiose dehydrogenase from Phanerochaete chrysosporium is composed of two subsites, a catalytic C subsite and a substrate-binding B subsite. Based on the crystal structure of the enzyme with a cellobiose analogue, residue Glu279 was selected for site-directed mutagenesis studies. Substitution of Glu279 to Ala, Asn, and Asp had no effect on the expression of the protein in Pichia pastoris but completely abolished its enzymatic activity. Substitution of Glu279 to Gln drastically altered the enzyme's substrate specificity. While the wild-type cellobiose dehydrogenase efficiently oxidizes cellobiose and lactose, the Glu279Gln mutant retained most of its activity with cellobiose but was completely inactive with lactose. We generated structural models of the active site interacting with cellobiose and lactose to provide an interpretation of these results.

DOI: 10.1016/j.bbrc.2009.12.052
PubMed: 20120044


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenase.</title>
<author>
<name sortKey="Desriani" sort="Desriani" uniqKey="Desriani" last="Desriani">Desriani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan. 50006831704@st.tuat.ac.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ferri, Stefano" sort="Ferri, Stefano" uniqKey="Ferri S" first="Stefano" last="Ferri">Stefano Ferri</name>
</author>
<author>
<name sortKey="Sode, Koji" sort="Sode, Koji" uniqKey="Sode K" first="Koji" last="Sode">Koji Sode</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20120044</idno>
<idno type="pmid">20120044</idno>
<idno type="doi">10.1016/j.bbrc.2009.12.052</idno>
<idno type="wicri:Area/Main/Corpus">000577</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000577</idno>
<idno type="wicri:Area/Main/Curation">000577</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000577</idno>
<idno type="wicri:Area/Main/Exploration">000577</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenase.</title>
<author>
<name sortKey="Desriani" sort="Desriani" uniqKey="Desriani" last="Desriani">Desriani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan. 50006831704@st.tuat.ac.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ferri, Stefano" sort="Ferri, Stefano" uniqKey="Ferri S" first="Stefano" last="Ferri">Stefano Ferri</name>
</author>
<author>
<name sortKey="Sode, Koji" sort="Sode, Koji" uniqKey="Sode K" first="Koji" last="Sode">Koji Sode</name>
</author>
</analytic>
<series>
<title level="j">Biochemical and biophysical research communications</title>
<idno type="eISSN">1090-2104</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Substitution (MeSH)</term>
<term>Binding Sites (genetics)</term>
<term>Carbohydrate Dehydrogenases (chemistry)</term>
<term>Carbohydrate Dehydrogenases (genetics)</term>
<term>Carbohydrate Dehydrogenases (metabolism)</term>
<term>Flavins (metabolism)</term>
<term>Lactose (metabolism)</term>
<term>Phanerochaete (enzymology)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Substrate Specificity (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Carbohydrate dehydrogenases (composition chimique)</term>
<term>Carbohydrate dehydrogenases (génétique)</term>
<term>Carbohydrate dehydrogenases (métabolisme)</term>
<term>Flavines (métabolisme)</term>
<term>Lactose (métabolisme)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Sites de fixation (génétique)</term>
<term>Spécificité du substrat (génétique)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Substitution d'acide aminé (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Binding Sites</term>
<term>Carbohydrate Dehydrogenases</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
<term>Sites de fixation</term>
<term>Spécificité du substrat</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
<term>Flavins</term>
<term>Lactose</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
<term>Flavines</term>
<term>Lactose</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Structure tertiaire des protéines</term>
<term>Substitution d'acide aminé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The active site of cellobiose dehydrogenase from Phanerochaete chrysosporium is composed of two subsites, a catalytic C subsite and a substrate-binding B subsite. Based on the crystal structure of the enzyme with a cellobiose analogue, residue Glu279 was selected for site-directed mutagenesis studies. Substitution of Glu279 to Ala, Asn, and Asp had no effect on the expression of the protein in Pichia pastoris but completely abolished its enzymatic activity. Substitution of Glu279 to Gln drastically altered the enzyme's substrate specificity. While the wild-type cellobiose dehydrogenase efficiently oxidizes cellobiose and lactose, the Glu279Gln mutant retained most of its activity with cellobiose but was completely inactive with lactose. We generated structural models of the active site interacting with cellobiose and lactose to provide an interpretation of these results.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20120044</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>03</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1090-2104</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>391</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jan</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>Biochemical and biophysical research communications</Title>
<ISOAbbreviation>Biochem Biophys Res Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenase.</ArticleTitle>
<Pagination>
<MedlinePgn>1246-50</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The active site of cellobiose dehydrogenase from Phanerochaete chrysosporium is composed of two subsites, a catalytic C subsite and a substrate-binding B subsite. Based on the crystal structure of the enzyme with a cellobiose analogue, residue Glu279 was selected for site-directed mutagenesis studies. Substitution of Glu279 to Ala, Asn, and Asp had no effect on the expression of the protein in Pichia pastoris but completely abolished its enzymatic activity. Substitution of Glu279 to Gln drastically altered the enzyme's substrate specificity. While the wild-type cellobiose dehydrogenase efficiently oxidizes cellobiose and lactose, the Glu279Gln mutant retained most of its activity with cellobiose but was completely inactive with lactose. We generated structural models of the active site interacting with cellobiose and lactose to provide an interpretation of these results.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Desriani</LastName>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan. 50006831704@st.tuat.ac.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferri</LastName>
<ForeName>Stefano</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sode</LastName>
<ForeName>Koji</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochem Biophys Res Commun</MedlineTA>
<NlmUniqueID>0372516</NlmUniqueID>
<ISSNLinking>0006-291X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005415">Flavins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D002237">Carbohydrate Dehydrogenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.99.18</RegistryNumber>
<NameOfSubstance UI="C019859">cellobiose-quinone oxidoreductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J2B2A4N98G</RegistryNumber>
<NameOfSubstance UI="D007785">Lactose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002237" MajorTopicYN="N">Carbohydrate Dehydrogenases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005415" MajorTopicYN="N">Flavins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007785" MajorTopicYN="N">Lactose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20120044</ArticleId>
<ArticleId IdType="pii">S0006-291X(09)02425-5</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbrc.2009.12.052</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Ferri, Stefano" sort="Ferri, Stefano" uniqKey="Ferri S" first="Stefano" last="Ferri">Stefano Ferri</name>
<name sortKey="Sode, Koji" sort="Sode, Koji" uniqKey="Sode K" first="Koji" last="Sode">Koji Sode</name>
</noCountry>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Desriani" sort="Desriani" uniqKey="Desriani" last="Desriani">Desriani</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000590 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000590 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20120044
   |texte=   Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20120044" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020